2022 IEEE 38th International Conference on Data Engineering (ICDE) | 978-1-6654-0883-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICDE53745.2022.00033

2022 IEEE 38th International Conference on Data Engineering (ICDE)

Efficient Top-£ Ego-Betweenness Search

Qi Zhang', Rong-Hua Lif, Minjia Pan’, Yongheng Daif, Guoren Wang', Ye Yuan'
Y Beijing Institute of Technology, Beijing, China; *Diankeyun Technologies Co. , Ltd.;

gizhangcs@bit.edu.cn; lironghuabit@126.com; panminjia_cs@163.com;
toyhdai@l63.com; wanggrbit@l26.com; yuan-ye@bit.edu.cn

Abstract—Betweenness centrality, measured by the number of
times a vertex occurs on all shortest paths of a graph, has been
recognized as a key indicator for the importance of a vertex in
the network. However, the betweenness of a vertex is often very
hard to compute because it needs to explore all the shortest paths
between the other vertices. Recently, a relaxed concept called
ego-betweenness was introduced which focuses on computing the
betweenness of a vertex in its ego network. In this work, we
study a problem of finding the top-£ vertices with the highest
ego-betweennesses. We first develop two novel search algorithms
equipped with a basic upper bound and a dynamic upper bound
to efficiently solve this problem. Then, we propose local-update
and lazy-update solutions to maintain the ego-betweennesses for
all vertices and the top-£ results when the graph is updated
by an edge insertion and deletion, respectively. In addition,
we also present two efficient parallel algorithms to further
improve the efficiency. The results of extensive experiments on
five large real-life datasets demonstrate the efficiency, scalability,
and effectiveness of our algorithms.

I. INTRODUCTION

Betweenness centrality is a fundamental metric in network
analysis [1], [2]. The betweenness centrality of a vertex v is
the sum of the ratio of the shortest paths that pass through
v between other vertices in a graph. Such a centrality metric
has been successfully used in a variety of network analysis
applications, such as social network analysis [3], biological
network analysis [4], communication network analysis [5] and
so on. More specifically, in social networks, a vertex with
a high betweenness centrality is plausibly an influential user
who can decide whether to share information or not [3]. In
protein interaction networks, the high-betweenness proteins
represent important connectors that link some modular organi-
zations [4]. In communication networks, the nodes with higher
betweennesses might have more control over the network,
thus attacking these nodes may cause severe damage to the
network [5].

Although betweenness centrality plays a critical role in
network analysis, computing betweenness scores for all ver-
tices is notoriously expensive because it requires exploring the
shortest paths between all vertices in a graph. The state-of-the-
art algorithm for betweenness computation is the Brandes’ al-
gorithm [6] which takes O(nm) time. Such a time complexity
is acceptable only in small graphs with a few tens of thousands
of vertices and edges, but it is prohibitively expensive on
modern networks with millions of vertices and tens of millions
of edges.

To avoid the high computational cost problem, Everett
et al. [7] introduced a relaxed concept called ego-betweenness
centrality which focuses on computing a vertex’s betweenness
in its ego network, where the ego network of a vertex w is the
subgraph induced by w and u’s neighbors. More specifically,
the ego-betweenness of a vertex u is measured by the sum
of the ratio of the shortest paths that pass through u between
u’s neighbors in the ego network. Everett et al. showed that
the ego-betweenness centrality is highly correlated with the
traditional betweenness centrality in networks, thus it can
be considered as a good approximation of the traditional
betweenness. In addition, ego-betweenness can also measure

the importance of a node [7], [8]. Unlike traditional between-
ness, which plays the role of “bridge” in a network, ego-
betweenness focuses on the links existing from the perspective
of a node and appraises the ability of a node as a “center”
in its ego network. With this property, ego betweenness can
be useful in the networks where global topology knowledge
is inaccessible or the network presents small-world features,
such as social networks [9], wireless sensor networks [10],
mobile ad-hoc networks [11], and vehicular ad-hoc networks
[12]. Moreover, real-life applications often require retrieving
the top-k vertices with the highest ego-betweenness scores,
rather than the exact ego-betweenness scores for all vertices.
Motivated by this, we in this paper study the problem of
identifying the top-k vertices in a graph with the highest ego-
betweennesses.

To solve the top-k ego-betweenness search problem,
a straightforward algorithm 1is to calculate the ego-
betweennesses for all vertices and then select the top-k results.
However, such a straightforward algorithm is very costly for
large graphs, because the total cost for constructing the ego
network for each vertex is very expensive in large graphs. To
efficiently compute the top-k vertices, the general idea of top-
k search frameworks [13]-[15] can be used, which explores
the vertices based on a predefined ordering and then applies
some upper-bounding rules to prune the unpromising vertices.
Inspired by these algorithms, we first derive a basic upper
bound and a dynamic upper bound of ego-betweenness. Then,
we develop two top-k search algorithms with those bounds to
efficiently solve the top-k ego-betweenness search problem. To
handle dynamic graphs, we present local-update solutions to
maintain ego-betweennesses for all vertices, and also develop
lazy-update techniques to maintain the top-k results. Addition-
ally, we propose two efficient parallel algorithms to improve
the efficiency of ego-betweenness computation. In summary,
we make the following contributions.

Top-k search algorithms. We develop a basic algorithm
with a static upper bound and an improved algorithm with
a tighter and dynamically-updating upper bound to find the
top-k vertices with the highest ego-betweennesses. The two
algorithms consume O(amdyayx) and O(amdyax + mlogn)
time using O(mdmax) space in the worst case respectively.
Here « is the arboricity of the graph [16] which is typically
very small in real-life graphs [17]. We show that both algo-
rithms can significantly prune the vertices that are definitely
not contained in the top-k results. Moreover, the improved
algorithm can achieve more effective pruning performance on
real-world graphs due to the tighter and dynamically-updating
upper bound.

Ego-betweenness maintenance and parallel algorithms. To
handle dynamic graphs, we present local-update algorithms
to maintain the ego-betweennesses of all vertices when the
graph is updated by inserting or deleting an edge. We also
propose lazy-update techniques to maintain the top-k results
for the updates of an edge. To further improve the efficiency,
we present two efficient parallel algorithms to compute all

2375-026X/22/$31.00 ©2022 IEEE 380
DOI 10.1109/ICDE53745.2022.00033
Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

k
(a) G
Fig. 1.

®) Gg)

Running example

vertices’ ego-betweennesses. Compared with the sequential
algorithms, our parallel solutions can achieve a high degree of
parallelism, thus improving the efficiency of ego-betweenness
computation significantly.

Extensive experiments. We conduct comprehensive exper-
imental studies to evaluate the proposed algorithms using
five large real-world datasets. The results show that 1) our
improved algorithm with a dynamic upper bound is roughly
5-23 times faster than the basic algorithm with a static upper
bound; 2) our maintenance algorithms can maintain the top-k
results in less than 12 seconds in a large graph with 58,655,848
vertices and 261,321,033 edges; 3) our best parallel algorithm
can achieve near 8 speedup ratio when using 16 threads; 4) the
top-k results of ego-betweenness are highly similar to the top-
k results of traditional betweenness. Thus, our results indicate
that the ego-betweenness metric can be seen as a very good
approximation of the traditional betweenness metric, but it is
much cheaper to compute by utilizing the proposed algorithms.

Reproducibility. For reproducibility, the source code of this
paper is released at github: https://github.com/QiZhang1996/
egobetweenness.

II. PRELIMINARIES

Let G = (V,E) be an undirected and unweighted graph
with n = |V| vertices and m = |E| edges. We denote the
set of neighbors of a vertex u by N(u), i.e., N(u) = {v €
V|(u,v) € E}, and the degree of u by d(u) = |N(u)|.
Similarly, the neighbors of an edge (u, v), denoted by N (u,v),
are the vertices that are adjacent to both u and wv, i.e.,
N(u,v) ={w € V|(u,w) € E, (v,w) € E}. Denote by dmax
the maximum degree of the vertices in G. For a subset S C V,
the subgraph of G induced by S is defined as Gg = (Vg, Es)
where Vs = S and Es = {(u,v)|u,v € S, (u,v) € E}.

We define a total order < on V as follows. For vertices u
and v in V, we say u < v, if and only if 1) d(u) > d(v)
or 2) d(u) = d(v) and w has a larger ID than v. Based on
such a degree ordering <, we can construct a directed graph
G from G by orientating each undirected edge (u,v) € G to
respect the total order « < v. We denote the out-neighborhood
of uin Gt as N*t(u) = {v € V|(u,v) € ET}.

We give an essential concept, called ego network, as follows.

Definition 1: (Ego network) For vertex p in G = (V, E),
the ego network of p, denoted by Gy, is a subgraph of G
induced by the vertex set N(p) U {p}.

Given a vertex p in G and its ego network G g), for u,v €
N(p), let gy, be the number of the shortest paths connecting
w and v in G'g(p) and gy, (p) be the number of those shortest
paths that contain vertex p. Note that in G'g(;), guv (p) is either
0 or 1. Denote by by, (p) = guwv(P)/gur the probability that a
randomly selected shortest path connecting u with v contains
p in G g(y). Based on the above notions, the definition of ego-
betweenness is given as follows.

Definition 2: (Ego-betweenness [7]) For a vertex p in G,
the ego-betweenness of p, denoted by Cp(p), is defined as

d

CB(p) = Zu<v buv(p)a u,v € N(p)

381

Example 1: Consider a graph G in Fig. 1(a) and a vertex
d € G with the ego network G () illustrated in Fig. 1(b). For
vertices ¢ and i, there are three shortest paths connecting ¢ and
z'inGE(d),namely,c—>g—>z’,c—>h%i, and ¢ — d — 1,
thus Jei = 3 and gcl(d) = 1, further bcz(d) = gcz(d)/g(‘z =
1/3 holds. Analogously, we have bpg(d) = 1/3, bge(d) =
bgs(d) = bpa(d) = bup(d) = 1/2, bia(d) = bip(d) = 1 and
the probabilities for other vertex pairs in Gg(q) are equal to
0, thus C'p(d) = 14/3.

Problem deﬁmtlon Given a graph G and an integer k, the top-
k ego-betweenness search problem is to identify the k vertices
in G with the highest ego-betweenness scores.

In addition, real-world networks undergo dynamically up-
dates. To this end, we also investigate the problem of top-k
ego-betweenness maintenance when the graph is updated.

Challenges. To solve the top-k ego-betweenness search prob-
lem, a straightforward algorithm is to compute the ego-
betweenness for each vertex, and then pick the top-k vertices
as the answers. Such an approach, however, is costly for
large graphs. This is because the algorithm needs to explore
the ego network Gig(p) to compute the ego-betweenness for
each vertex p. The total size of all ego networks could be
very large, thus the straightforward algorithm might be very
expensive for large graphs. Since we are only interested in
the top-k results, we do not need to compute all vertices’ ego-
betweenness scores exactly. The challenges of the problem are:
1) how to efficiently prune the vertices that are definitely not
contained in the top-k results; 2) how to efficiently compute
the ego-betweenness for each vertex; 3) how to maintain the
top-k vertices with the highest ego-betweennesses in dynamic
networks. To tackle these challenges, we will develop two
new online search algorithms with two non-trivial punning
techniques to efficiently search the top-k ego-betweenness
vertices. Then, we also design local update techniques and lazy
update techniques to handle frequent updates and maintain the
top-k results.

III. ToP-k EGO-BETWEENNESS SEARCH
A. The BaseBSearch algorithm
Given a graph G (V,E) and a vertex p € V. We
use Sp(p) to store the edges between the neighbors of p,
ie., Spp) = {(w,v)|u,v € N(p), (u,v) € E}. For vertices
u,v € N(p) and (u,v) ¢ E, we suppose that u < wv.
Let Sp(u,v), which does not include p, be the set of
vertices that connect v and v in Gg(,), ie., S'p(u v) =
{wlu,v,w € N(p), (u,v) & E, (u,w) € E, (v, w)EE} If p
is the only one vertex p that links v and v in G E(p)» WE add the
pair (u,v) into the set SE(p), ie., SE(p = {(u,v)|u,v,w €
N(p), (u,v) ¢ E,Pw EN()(uy}) € E,(v,w) € E}.
Denote by SE(p) the collection of all Sy, (u, v)s. Based on these
notations, all the vertex pairs are divided into three categories,
ie., SE(p), SE(p) and SE(p) We use C to represent the size of
S’E(p), ie., Cp = |Sp(p|. Similarly, we denote C = |SE<,,)\
and Cp = iSE(p)|
Example 2: Consider the ego-network Gg(d) in Fig. 1(b).
The vertex pair (a,b) belongs to Sp 4y because the edge (a, b)
exists in Gg(d). For the pair (a,g), we have S p(a,g) = {c}
as it maintains the vertices that can connect a and g in
GE(q) but does not include the ego vertex d. While for the
pair (a,i), there is no vertex can link a and ¢ expect d,
thus we add (a,7) into SEé,,) Generally, we have Sp

{((a,9),{c}), ((a,), {e}) (b,g%{C})»((b,h),{C}),((Cw)'),{%

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

h}),((g,h),{c,i})}, Spw) = {(a,i),(b,i)} and the other
pairs are in Sp(,).]
Before introducing the BaseBSearch algorithm, we first give
some useful lemmas which lead to an upper bound of ego-
betweenness for pruning search space in BaseBSearch.

Lemma 1: For any vertex p in G, we have C,, + C +C, =
d(p)* (d(p) 1)
Proof Clearly, the vertex pairs between vertex p’s neigh-
bors are divided into three categones namely, SE(,,), SE(p)
and S E(p)- Therefore, the sum of c,, C and C is the number

of all vertex pairs between N(p), i.e., C, + C, + C,
d(p)*(t;(p)—l).

O

_ d(p)*d(p)-1) _

Lemma 2: For any vertex p in G, Cp(p) 5
d(P)*(é(P)*l)

_ -) L B
CP - CIJ + Z(u,v)eSE(p) [Sp (u,0)|+1 < Ub(p) -
holds.

Proof: Based on Definition 2, C(p) is closely related
to the number of shortest paths between u and v in Gp().

First, for each (u,v) € S E(p)> there is only one vertex p that
can link u and v, so by, (p) is equal to 1. Thus, C is a part
of Cp(p) which equals M Cp — C according
to Lemma 1. Second, for every vertex pair (u, v) e S E(p)

Sp(m v) is the set of vertices connecting u with v in Gg(p)
but does not include p, thus the probability b,,,(p) is equal to
1 To sum up, CB(P):M—C;)—C}-F

|Sp (u,w)|+1° R
When S, is not empty, we have
1
Z(u 'U)GS,,(U v) 1> Z(u 71)€SE(p) lsp(u 1})|+1

Otherwise, Cjy = 3. eSu0) m = 0. Since C,, is
]

no less than 0, thus Cg(p) < ub(p) holds.

Equipped with Lemma 2, we present a basic search ap-
proach, called BaseBSearch, which computes the vertices’
ego-betweennesses in non-increasing order of their upper
bounds. The main idea of BaseBSearch is that a vertex with
a large upper bound may have a high chance contained in
the top-k results. Based on this idea, the exact computations
for the vertices with small upper bounds will be postponed
or even avoided, thus BaseBSearch can significantly improve
the efficiency compared with the algorithm calculating all ego-
betweennesses.

The pseudo-code of BaseBSearch is outlined in Algorithm
1. For each vertex u, S, is a map to maintain the number of
the shortest paths that do not go through w for all neighbor
pairs. Algorithm 1 works as follows. It first calculates the
upper bound ub(u) for each vertex u based on Lemma 2
and initializes Cg(u) as ub(u) (lines 1-2). Then, it sorts the
vertices in non-increasing order with respect to their upper
bounds, and picks an unexplored vertex u with the maximum
ub(u) to calculate C'p(u) until the top-k vertices are found
(lines 6-19). During the processing of vertex u, if the result
set R has k vertices and the min,cr Cg(v) > ub(u) holds, the
algorithm terminates (line 7). Otherwise, BaseBSearch com-
putes C'p(u) and identifies whether u should be added into the
answer set R (lines 8-18). For vertex u, we explore the number
of shortest paths between u’s neighbors by enumerating the
triangles including v and maintain them in the hash map S,,.
In S, we always keep a vertex pair (¢, j) with val = 0 if ¢ and
j are connected in G E(u)> ON the other hand, val records the
number of vertices that link ¢ and j but not contain u. When
a A(y,v,w) 1s found, we update the hash maps for u, v and w
(lines 12-13). Note that BaseBSearch processes vertices in the

E(u U)ESE(;?) m
Cp = 98| =

382

Algorithm 1: BaseBSearch (G, k)

Input: G = (V, E), an integer k > 1.
Output: The top-k vertex set R.
for u € V do
L Ub(u) d(u)*(%(")*ll; Cp(u) + ub(u);

3 R« 0

4 Construct the oriented graph Gt = (V, ET) of G;

5 Initialize an array B with B(i) = false,0 < i < n;
6

7

8

(SR

for w € V according to the total order do
if |R| = k and min,cr Cp(v) > ub(u) then break;
for v € N1 (u) do B(v) + true;
9 for v € NT (u) do
for w € N1 (v) do
if B(w) = true then
L t UptSMap(S, v, w); UptSMap(Sb,u w);

if 35S, (u, v) then S,,.insert((u,v), 0);
for v € NT(u) do B(v) < false;
for ((i,5),val) € S, do
CB(U.) +— CB(u) —1;
if val # 0 then Cp(u) <~ Cp(u) +

| Update R based on u and C'g(u);
return R;

Procedure UptSMap(S,,, v, w)
for z € N(u) do
if (z,v) € E and 3S.,(z,v) then S, .insert((z, v), 0);
if (z,w) € E and ﬂSu(z w) then Su insert((z, w), 0);
if (z,v) € E and (z,w) ¢ E then

if A5, (z, w) then S, .insert((x, w), 1);

else if S, (z, w).val # 0 then S, (z, w).val++;

if (z,v) ¢ E and (x,w) € E then
Update S,, and S, as lines 25-26;

1.
valfi’

v c i f d X e h g b a
ub | 21 | 15 | 15| 15 | 10 | 10 | 6 6 6 6
Cp(v) | 41/6 | 8 11 | 14/3 45 | 2/3 | 23 1 1

R {c} |,y | {fi] {f0, {f.x,i,c,d}
¢ |eod)

Fig. 2. The running process of BaseBSearch on G

order of the upper bounds (i.e., the total order), all triangles
containing v can be touched without omission after handling
u and S, maintains the number of the shortest paths correctly.
Further, the algorithm calculates C'z(u) according to Lemma 2
and updates R (lines 15-18). Finally, BaseBSearch outputs the
answer set R.

Example 3: Consider a graph G as shown in Fig. 1(a) and
an integer k = 5. The running process of Algorithm 1 on
this graph is illustrated in Fig. 2. The algorithm computes
the ego-betweennesses of ¢, i, f,d, x,e, h, g,b,a in turn based
on their upper bounds (i.e., the total order). After computing
Cp(a), the largest upper bound among the remaining vertices:
Jyk,u,v,2,y,z is ub(j) 3 < Cgp(d) 14/3 (d is
the 5-th element in R), thus Algorithm 1 terminates. Com-
pared with calculating the ego-betweennesses of all vertices,
BaseBSearch can save 6 ego-betweenness computations by
utilizing the upper bound ub. O

B. The OptBSearch algorithm

BaseBSearch may not be very efficient for top-k search
because the upper bound ub is not very tight. To further
improve the efficiency, we propose the OptBSearch algorithm

with a dynamic upper bound ub which is tighter than ub.
Recall that we calculate Cg(u) with the information of
the shortest paths which is derived by touching the triangles
including vertex u. In this processing, some useful information
about the number of shortest paths for «’s neighbors can also
be obtained. We refer to those information as identified in-

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 2: OptBSearch (G, k,)

Algorithm 3: EgoBWCal (G, u, B)

Input: G = (V, E), an integer k > 1, a gradient ratio 6 > 1.
Output: The top-k vertex set R.
1 H<+0; R+ 0;
2 Initialize an array B with B(i) = false,0 < i < m;
3 forv € V do B _
4 L ub(v) « %, Cp(v) < ub(v); H.push(v,ub(v));
while H # () do
(v™,tb) = H.pop();
Compute ub(v*)gccording to Lemma 3;
if 0 - ub(v™) < tb then
L if |[R| < k or ub(v™) > min,er Cp(v) then

L H.push(v*, ub(v*));
continue;
if |R| = k and tb < mmueR Cp(v) then break;
EgoBWCal (G, v*, B);
if |R| <kthenR<—RU{v
else if Cp(v™) > minycr C’B(v) then
| u < argmin,er Cp(v); R+ (R—{u})U{v"};

B(v™*) « true;

18 return R;

formation which include some vertex pairs and edges. Below,
we will use these identified information to derive a tighter and
dynamically-updated upper bound of ego-betweenness.

Given a vertex p, let *Sg(,) be the collection of identified
edges in G () and *Sg(;,) be the set of the currently identified
vertex pairs whose property is the same as the pairs in S E(p)-
For a vertex pair (u, v) in *SE(p), denote by *Sp(u vy the set of
identified vertices that link « and v but does not contain p. Let
*C), and *C), be the size of *Sg(p) and *Sp(y), respectively.
We develop a tighter upper bound of ego-betweenness ub in
Lemma 3. N

Lemma 3: For a vertex p in G, Cp(p) < ub(p) =

d(p)* (d()—1)
e =Gy —+Cy +Z(u v)€xSE) I*Sp<u v+l holds.

Proof: By definition, we have *C <C,, *C < C and

| * S p(u, v)| < |S (u v)| Further, Z(u v)€*xSE(p) |*Sp(u,u)\+1 =

Z(u,v)eSE@) W holds. According to Lemma 2, we

canobtainCB()<EB():M_*C —xC, +

Z(u 7’)€*SE<1,) ‘*Sp(u St = Ub(p) O

Note that the upper bound ub() in Lemma 3 will be
dynamically updated during the execution of the top-k search
algorithm, because *C), *C and | * Spy,.| Will be updated

when calculating vertices’ ego- betweennesses exactly. The
OptBSearch framework with such a dynamic upper bound

is depicted in Algorithm 2. It first calculates ub(v) and
Qﬁ(v) for each vertex v, and pushes v with the initial bound

ub(v) into a sorted list H (lines 3-4). Then, the OptBSearch
iteratively finds the top-k results (lines 5-17). It pops the

vertex v* with the largest upper bound value tb from H. As
the number of shortest paths between v*’s neighbors may be

updated, the algorithm calculates ub(*) based on Lemma 3.

OptBSearch then compares ub(*) with the old bound tb by
employing a parameter 6§ > 1 to avoid frequently calculating

the upper bounds and updating H. When - ub(v*) < tb, that
means ub(*) is substantially smaller than th. If |R| < k or
ub(v*) > min,ep Cp(v), we push v* to H again with the

tighter bound ub(v*) (line 10). Otherwise, v* does not belong
to the top-k answers and thus can be pruned. In both cases, the

383

Input: G = (V, E), vertex u, an array B.
Output: Cp (u).
Initialize DN and EN according to B;
Initialize an array V;s with V(i) = false,0 < i < n;
for i € N(u) do rd(i) + 0;
for ((i,j),val) € S, do
if val = O then
[rd(i) « rd(i) U{j}: rd(j) < rd(5) U{i}:

7 for i € DN do
8 for p € rd(i) do V;s(p) < true;
9 for j € DN — {i} do
if Vis(j) = false then
for p € rd(j) do

for i € EN do
for j € EN — {i} do
if (i,j) € E then

Sy .insert((¢, 7),0); S;.insert((u, j), 0);
S;.insert((u,),0);
for k € rd(j) do

if 35, (4, k) then

| Su.insert((i, k), 1); Sj.insert((i, k), 1);

else if S, (¢, k).val # O then
L Su(i, k).wal++; S (i, k).val++;

a B W=

if Vis(p) = true and B(p) = false then
S (i, g).val++; Sp (i, 7). val++;

Update Sy, S; by rd(i) as lines 19-23;
rd(i) < rd(i) U {j}; rd(j) < rd(j) U {i};

26 Calculate C'p(u) as lines 15-17 of Algorithm 1;
27 return C'p(u);

algorithm needs to pop the next vertex from H. If the early
termination condition (line 12) is not satisfied, the algorithm
performs EgoBWCal to compute C'g(v*) exactly and updates
R based on Cp(v*) (lines 13-17). Note that we use an array
B to record the vertices whose ego-betweennesses have been
calculated, which can reduce redundant computations in the
EgoBW(Cal procedure.

Algorithm 3 outlines the EgoBWCal procedure. Like
BaseBSearch, a key issue is maintaining the number of the
shortest paths in .S, correctly by finding the triangles contain-
ing u. To avoid reduction, a simple but efficient approach is to
record those enumerated triangles and update .S,, by deriving
the shortest paths from these triangles. To this end, for each
neighbor ¢ of u, Algorithm 3 uses rd (i) to store such vertices
that are contained in the touched triangles A(; . . It first
initializes rd(i) for every ¢ € N(u) with the current S, as
Su(i,j).val equals 0 indicates a visited triangle A; ; .,y (lines
3-6). Then, the procedure handles w’s neighbors to maintain
S, according to whether they have been processed (lines 7-
25). Specifically, if B(i) = true, we put i into the set DN
and call it a processed vertex; otherwise, 7 is added into the set
E N where stores the vertices to be processed. For the vertices
i,j € DN, EgoBWCal finds their common neighbors (denoted
by p) based on rd(¢) and rd(j) and updates the number of the
shortest paths between ¢ and j for S, and .S}, (lines 7-13). On
the other hand, given i,57 € EN, the procedure enumerates
new triangles and maintains related hash maps with 7d(7)
and rd(j) (lines 14-25). Note that with the discovery of new
triangles, EgoBWCal also updates the related rd(i)s to avoid
reduction (line 25). Finally, EgoBWCal calculates C'g(u) with
the same method as used in BaseBSearch.

Example 4: Reconsider the graph G in Fig. 1(a). Suppose
that £ = 5 and # = 1. The running process of Algorithm 2
is illustrated in Fig. 3. The vertices colored red are computed
their ego-betweennesses exactly and the vertices in gray grids

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

15 [15 | 232

10

6 3 [H[232 [10 [195 [6 3 [

(i, 15)

10 6 s [1]
(x.10) | (h,6) \

~[@15] 22

(x, 10)

(x, 10)

0.6 | .3 | (D [¢232) 193] ho) | 3 | D

E15) | (,10) | 6)

(e,

10)

-

(806

(e, 10) (8 6)

@, 15) (b, 6)

(@, 6)

R={<i, 8>, <c, 41/6>}

(a) Pop out f

R={<i, 8>, <c, 41/6>}

(b) Pop

(b, 6) (b, 6)

(a, 6) (a, 6)

out d

R={<f, 11>, <x, 10>, <i, 8>, <c, 41/6>}

(c) Pop out e

si6 | 13] H[3 1 s | 13]

[193 | 6 s [3 [1]
~@ 193] 06 | @5 [.3 | «D |

(k. 1)

(&.5/6) [(h.173) |

= 03 [&) [@56][013]

(g 6)

(b, 1)

(b, 6)

1)

(2,6)
R={<f, 11>, <x, 10>, <i, 8>, <c, 41/6>, <d, 14/3>}

(d) Pop out h, g,b,a

R={<f, 11>, <x, 10>, <i, 8>, <c, 41/6>, <d, 14/3>}

(e) Pop out e

[CR))
@ 1)

R={<f, 11>, <, 10>, <i, 8>, <c, 41/6>, <d, 14/3>}
(f) Pop out j

Fig. 3. The running process of OptBSearch on G

need to update their upper bounds and push back into H again.
The algorithm pushes all vertices with the initial upper bounds
into H and then processes them based on H. First, it pops ¢

with the largest upper bound tb = 21 and calculates ub(c)
and Cp(c). Due to R = {), c is added into R and OptBSearch
does the same operation for i. Then, f is popped with tb =
15 and Algorithm 2 calculates ub(f) as shown in Fig. 3(a).
Since ub(f) = 23/2 is substantially smaller than tb based on
¢ = 1, we push (f,23/2) into H again and pops d as the next
processing vertex in Fig. 3(b). The tighter bound ub(d) = 19/3
is less than 15, thus OptBSearch pushes d into H again with
ub(d). In the following three iterations, OptBSearch computes
Cp(f) and Cp(z) and adds them into R, and then processes
e as shown in Fig. 3(c). e is pushed into H with ub(e) = 4
and the algorithm pops d to calculate C'p(d) and adds d into
R in Fig. 3(d). Due to tb = 6 > C(d), h is popped and we
calculate ub(h) to update H. Similarly, we push g,b,a into
H again with ub(g), ub(b), ub(a) as shown in Fig. 3(e). When
e is processed, Cp(e) = 9/2 < Cp(d) and |R| = k =5
hold, thus e is not an answer of top-k results. When pops
j in Fig. 3(f), the algorithm safely prunes j since ub(j) <
Cp(d). Obviously, the remaining vertices can also be pruned.
In OptBSearch, we invoke EgoBWCal six times to calculate
the ego-betweennesses, while BaseBSearch performs ten ego-
betweenness computations. O

C. Analysis of the proposed algorithms

Below, we mainly analyze the correctness of Algorithm 1.
The correctness analysis of Algorithm 2 is similar to that of
Algorithm 1, thus we omit it for brevity.

Theorem 1: Given a graph G = (V, E) and an integer k,
Algorithm 1 correctly computes the top-k vertices with the
highest ego-betweennesses.

Proof: Recall that Algorithm 1 iteratively processes the
vertices based on their upper bounds (Lemma 2). When a
vertex u is handled, if the answer set R has k vertices
and min,ep Cp(v) > ub(u), then Cp(u) < ub(u) <
min,eg Cp(v) holds. For any vertex w € V with a smaller
degree, we have Cg(w) < ub(w) < ub(u) < min,eg Cp(v).
Therefore, the algorithm can safely prune the remaining ver-
tices and terminate, thereby the set R exactly contains the
top-k answers.

Before analyzing the time complexity, we give the concept
of arboricity of a graph G as follows [18].

Definition 3: (Arboricity) Given a graph G = (V| E) with
n > 2, the arboricity « of G is defined as:

|Es|
Vs —1

A
o=

(€]

max
VGs=(Vs,Eg)CG

384

The arboricity « is an important metric to measure the
sparsity of a graph which is typically very small for most
real-world graphs [18]. It was widely used to bound the time
complexity of many graph analysis algorithms [14], [15], [17],
[19]-[21]. Below, we also analyze the time complexity of
Algorithm 1 and Algorithm 2 based on the parameter a.

Theorem 2: The worst-case time and space complexity of
Algorithm 1 is O(amdmax) and O(dmaxm), respectively.

Proof: In lines 6-18 of Algorithm 1, the algorithm needs
to enumerate each triangle once which takes O(am) time.
Note that when a triangle A, ,,.,) is enumerated, the algo-
rithm requires to maintain Sy, S, S,. The time overhead of
the update operator can be bounded by O(d(u)) < O(dmax)-
Hence, the time complexity of Algorithm 1 is O(amdmpax)-
Second, we analyze the space complexity of Algorithm 1.
Clearly, the space overhead is dominated by the size of
the map structure S,. For u € V, the map structure S,
contains O(d(u)?) vertex pairs, thus the space complexity is
O(Zuev d(u)2) < O(dmaxm).

Theorem 3: In the worst case, Algorithm 2 takes
O(amdmax + mlogn) time using O(dpaxm) space.

Proof: Algorithm 2 also enumerates each triangle once,
thus it takes O(am) time in the worst case. When invoking
Algorithm 3 to calculate Cg(u) for vertex u, the maps of u’s
neighbors are updated, causing the re-calculations of the upper
bound in Lemma 3 and the maintenance of the priority queue
H for those neighbors. Thus, the total time for updating the
new bounds and H can be bounded by O(}_, .y d(u)logn) <
O(mlogn). To sum up, the time complexity of Algorithm 2
is O(amdpyax +mlogn). Similar to that of Algorithm 1, the
space overhead of Algorithm 2 is dominated by the size of the
map structure S, which is O,y d(u)?) < O(dpaxm). O

Note that compared to Algorithm 1, the time complexity
of Algorithm 2 has an additional term O(m logn). However,
such an additional term is often dominated by O(amdmax),
because O(logn) is often smaller than O(admax) in real-
world graphs. As shown in our experiments, Algorithm 2 is
much more efficient than Algorithm 1 on real-world graphs
due to the dynamic and tight upper bound.

IV. THE UPDATE ALGORITHMS

Real-world networks are often frequently updated. In this
section, we develop local update algorithms to maintain the
ego-betweennesses for all vertices when the graph is updated.
We also propose lazy update techniques to efficiently maintain
the top-k results. We mainly focus on the cases of edge
insertion and deletion, as vertex insertion and deletion can
be seen as a series of edge insertions and deletions.

Our update algorithms are based on the following key
observation.

Observation 1: After inserting/deleting an edge (u,v)
into/from G, the ego-betweennesses of the vertices in

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 4: Locallnsert

Algorithm 5: LocalUptSMap

Input: G = (V, E), ego-betweenness array C'p, an inserted edge (u, v).
Output: the updated C'g.
Insert (u,v) into Gj
S < LocalUptSMap(G, (u, v));
L+ N(u) N N(v); Cg + Cg;
for (z,y) € S, do
fx*vory*vthen
L Cs(w) « Cr(u) +1/(Sulw,y) +1);
else -
L Cs(w) « Cr(w) +1/(Sul@,y) +1) = 1/Su(, y);

PR

9 Update C'(v) as lines 4-8;
for x € L do
for (y,z) € S, do
f(’L/—uandz—'u)or(y—’uandz—u)then
L Cr(e)« Cr(x) —1/(Su(y,2) +1);
else -
L Cs(x) « Cr(a) +1/(Sz(y,2) + 1) = 1/S:(y, 2):

16 return C p;

N(u,v) U {u,v} need to be updated, and the ego-
betweennesses of the vertices that are not in N (u,v) U {u, v}
remain unchanged.

Proof: Here, we prove the edge insertion case and the
proof for edge deletion is similar. The insertion of (u,v)
causes the insertions of vertex v/u and a series of edges
{(v,w)|w € N(u,v)}/{(u,w)|w € N(u,v)} into u/v’s ego
network G'g(4)/GE(v), thus the ego-betweennesses of v and
v need to be updated. In addition, for a common neighbor
w € N(u,v), there is a new edge (u,v) in Gg(y), thus the
ego-betweenness of w should be re-computed. O

A. Local-update for edge insertion

We present the update rules for the vertices u, v and
w € N(u,v) when inserting an edge (u,v). For brevity, let
L = N(u,v) denote the common neighbors of v and v and
Su(x,y) be the number of vertices that link = and y but does
not include w. Unless otherwise specified, S, (x,y) represents
the value after inserting the edge. Denote by C'p(u) the ego-
betweenness of v after an edge insertion and Cp(u) is the
value before inserting an edge.

Lemma 4: Consider an inserted edge (u,v),
the updated ego-betweenness of wu is: Cp(u)
Cp(u) + 3>, yeL,(x, y)gE(l/(Su(z,y) +1) — 1/Su(:Y))
> zeN(u),e¢r 1/ (Su(v,z) + 1). The calculation of Cp(v) is
similar.

Proof: For vertex u, after inserting an edge (u,v) into G,
v is a new neighbor and is added into Gg(u). For z,y € L
and (z,y) ¢ E, Cp(u) has included the contribution of vertex
pair (x,y), thus we should update this part. v is a new vertex
that connects = and y, and the number of the shortest paths
between x and y only adds 1, thus we can calculate S, (z, y)
and reveal the previous contribution to calculate C'g(u), i.e.,
Cp(u) =Cp(u)+1/(Su(z,y)+1)—1/S,(x,y). In addition,
for x € L, x and v are connected, thus it does not contribute to
Cp(u).Forz ¢ L, (v,x) is a new vertex pair which makes u’s
ego-betweenness increase, thus we need to compute S, (v, x)
and calculate C'p(u) by adding 1/(S, (v, x) + 1). O

Lemma 5: Consider an inserted edge (u,v), the updated
ego-betweenness of w € L is: Cp(w) Cp(w) —
1/ (8w (u,v) +1) 430 e N () AN () — {0} (o) g £ (L (Sw (@, 0) +

1)=1/8u(@,0)) 42 seN ()N (o) {u} () ¢ 2 (L (Sw (@, u)+
1) = 1/8u (2, u)).

JF

385

Input: G = (V, E), an edge (u, v).

Output: The map set S.

L + N(u) N N(v);

for x € N(u)\L do S, .insert((z,v),0);

for z € N(v)\L do S, .insert((z,u),0);

for © € L do Sy .insert((u,v),0);

for p € L do

for x € N(u) N N(p) do

if (z,v) ¢ E and x # v then

Su(z, v)++;

for y € N(z) N N(v) N N(p) do
if 35S, (x, v) then Sy.insert((z,v),0);
Sp(x, v)++;

[P N I S I T

= =
=2

Update Sy, S as lines 6-11;
for ¢ € L do
if (p,q) ¢ E and q < p then
for y € N(u) N N(p) N N(q) do
if #S.(p, q) then S, .insert((p, q),0);
Su(p, @)+
Update S, as lines 15-17;

if (p,q) € E and p < q then
L Sp(u, v)++; Sq(u, v)++;

21 S(—{S |z € LU {u,v}};
return S

i k
@ G ® G © Gr(py

Fig. 4. Running example

Proof: For vertex w € L, the insertion of (u,v) causes
the direct connection between u and v in G g(w) which makes
w’s ego-betweenness decrease. We need to compute S, (u, v)
before the insert operation and calculate C' g (w) as: Cg(w)
Cp(w) — 1/(Sw(u,v) + 1). In addition, for z € N(w) N
N(v) and (u,z) ¢ E, v now is a new vertex that connects u
and z, thus we calculate S,,(u,x) and C'g(w) as: Cp(w) =
Cp(w) + 1/(Sw(u,x) + 1) — 1/Sy (u, z). Analogously, for
z € N(w) N N(u) and (v,z) ¢ FE, u is a new vertex that
links v and x, we calculate C'g(w) as the above operation. [

Equipped with the above lemmas, we propose a local
update algorithm, called Locallnsert, to maintain the ego-
betweennesses for handling edge insertion. The pseudo-code
of Locallnsert is illustrated in Algorithm 4. Locallnsert first
inserts the edge (u,v) into G (line 1). Then, it invokes the
LocalUptSMap (Algorithm 5) to recompute the number of
shortest paths of the affected vertex pairs in the ego networks
of u,v and their common neighbors (Observation 1). Finally,
Locallnsert updates the ego-betweennesses for affected ver-
tices. For the endpoints u, v of the inserted edge, we calculate
Cp(u) and C'p(v) based on Lemma 4 (lines 4-9); On the
other hand, for the common neighbor w, Locallnsert computes
C'p(w) according to Lemma 5 (lines 10-15).

Example 5: Reconsider the graph G in Fig. 1(a). Sup-
pose that we insert an edge (i, k) into G. Clearly, the ego-
betweennesses of i,k and their common neighbors change
based on Observation 1. Fig. 4(a) and Fig. 4(b) depict the ego
networks of k and 4, respectively. In Fig. 4(a), the new pairs,
i.e., (f,4) and (j,1), are generated due to the connection of i
and k, thus Cp (k) changes. According to Lemma 4, the new
Cp(k) is CB(k) Cp(k) +1/(Sk(f,5)+1) —1/5k(f,) =
141/(14+1)—1/1 = 1/2. Similarly, we can easily check

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

®) Ggg)

Fig. 5. Running example

i
(@ GEg(e) © GEge

that the updated ego-betweenness of i is C'p(i) = 10.5 from
G k(). For the common neighbor f, its ego network Gy is

shown in Fig. 4(c). After the insertion of (i, k), the C'p(f)
is 9.5 which equals 11 before. This is because ¢ is now a
neighbor of k& and they no longer need intermediate vertices
to reach each other. In addition, the shortest paths for some
vertex pairs may pass through ¢ or j which causes the number
of shortest paths to increase, thus making the ego-betweenness
of f decrease. O

B. Local update for edge deletion

Here we consider the case of deleting an edge (u, v) from G.
When (u, v) is deleted, only the vertices in LU {u, v} need to
update their ego-betweennesses according to Observation 1.
Below we introduce the update rules for u, v and w € L.
Since the proofs of the following lemmas are similar to that
of Lemma 4 and Lemma 5, we omit them due to the space
limitation. Like edge insertion, we use Cg(u) and Cp(u) to
denote the ego-betweenness of u before and after deleting an
edge respectively.

Lemma 6: Consider a deleted edge (u,v),
the updated ego-betweenness of u is: Cp(u) =
CB (U) + Zx,yeL,(J;,y)éE(l/Su (x7 y) - 1/(Su(x7 y) +
1)) = Xsen(u)egr 1/(Su(v,z) + 1). The case of updating
Cp(v) is similar.

Lemma 7: Consider a deleted edge (u,v), the updated ego-
betweenness of w € L is: Cp(w) = C(w) + 1/(Sy(u,v) +
D)+ 2 e N@)nn (w)— o} (@) g (1/ S (@, 0) =1/ (Sw (2, v) +
13%+Z”’€N<w)ﬂN<v>—{u},<z,u)eE(l/Sw(%‘7U)*l/(SwWaUH
1)).
Note that S, (x,y) in Lemma 6 and Lemma 7 represents
the value before deleting the edge. In particular, S, (u,v) in
Lemma 7 is the value after the deleting update. Based on
these lemmas, we present a local update algorithm, called
LocalDelete, to maintain the ego-betweennesses when an edge
(u,v) is deleted. The framework of LocalDelete is similar to
that of Locallnsert. We only need to make the following minor
changes. For u and v, LocalDelete modifies line 6 and line
8 of Algorithm 4 to Cp(u) + Cp(u) — 1/(Sy(z,y) + 1)
and Cp(u) + Cp(u) + 1/Su(z,y) — 1/(Su(=, y) + 1)
based on Lemma 6. According to Lemma 7, LocalDelete
calculates C'g(z) for a common neighbor z as C'g(z) +
Cp(x)+1/(S:(y,2)+1) and Cp(x) + Cp(x)+1/S.(y,2)—
1/(Sz(y, 2)+ 1) corresponding to line 13 and line 15 of Algo-
rithm 4. Note that LocalDelete first performs LocalUptSMap
(Algorithm 5) before deleting (u, v) and then updates the ego-
betweennesses of the affected vertices. Finally, it removes
(u,v) from G and terminates. We omit the pseudo-code of
LocalDelete due to the space limit.

Example 6: Reconsider the graph G in Fig. 1(a). Suppose
that we delete an edge (c,g) from G. The ego networks of
¢,g and their common neighbors change; further their ego-
betweennesses need to be updated. For vertices ¢ and g, their
ego networks are depicted in Fig. 5(a) and Fig. 5(b). Since ¢
and ¢ are disconnected, the pair (c,4) in Fig. 5(b) no longer

386

exists and the number of shortest paths for the vertex pair
(e,d) changes. According to Lemma 6, C'g(g) should be
calculated as C'g(g) = Cp(g)—1/(Sq4(c,4)+1)+1/S4(e,d)—

1/(Sg(e,d)+1) =2/3-1/3+1/2— 1/3 = 1/2. Analogously,
the C'g(c) is 55/6 which can be easily checked from Fig. 5(a).
For the common neighbor e, its ego network G g,y is shown
in Fig. 5(c). After deleting (c, g), C'p(e) is still equal to 4.5
according to Lemma 7. (]

C. Updating the top-k results

Here we present lazy update techniques to maintain the
top-k results when the graph is updated. The lazy-update
techniques for edge insertion and edge deletion are designed
by maintaining a sorted list of the vertices. Specifically, the
sorted list, denoted by H, contains all vertices in G. For
each vertex u in H, u associates with two variables, namely,
H(u).Cp and H(u).F¢, which represent the ego-betweenness
Cp(u) and the update state of u. If H(u).Fg equals true,
that means H(u).Cp is not the exact value and should be
re-calculated. Otherwise, H (u).Cp is accurate. We calculate
H(u).Cp for each vertex v and initialize H(u).F¢ as false,
and then sort all vertices in non-increasing order of their ego-
betweennesses to obtain H. Equipped with H, the lazy update
techniques for edge insertion and edge deletion are as follows.

Lazy update for edge insertion. Consider an insertion edge
(u,v) and a common neighbor w € N (u)NN (v). The calcula-
tions of Cg(u), Cp(v) and Cg(w) are described in Lemma 4
and Lemma 5, respectively. Obviously, S, (x, *)+1 > S, (*, %)
holds, thus we have 1/(Sy« (%, *)+1) < 1/S,(*, *). For vertex
w, the parts 37, n w) N (u)— (v}, (x,0)g 2L/ (Sw(@, v) +1) —
1/Sw(,v)) and 370 e n(w)an ()~ {u},(o,u)g e (L (Sw (@, u) +
1) — 1/8,(z,u)) are both less than 0, and 1/(S,,(u,v) +
1) is subtracted from Cp(w), thus Cp(w) tends to
decrease. However, for Vertex u (as well as wv), the
part Y . Nu)wg¢r L/ (Su(v,2) + 1) increases, but the part

el (z, y)gEé/ (z y +1) 1/5,(x,y)) decreases, thus
the changes of Cp(u) and Cp(v) are unclear. Nevertheless,
an interesting finding is that with the insertion operation, the
degrees of u and v increase and the upper bounds of Cp(u)
and Cp(v) also increase. Based on these findings, we can
implement a lazy update rule to maintain the top-k results for
edge insertion.

The lazy update algorithm to handle edge insertion, called
Lazylnsert, is shown in Algorithm 6. For the endpoint u
of the inserted edge, Lazylnsert first identifies whether u is
included in the top-k result set R. If u € R, it calculates
the ego-betweenness H(u).Cp and sets H(u).Fg to false
to indicate the correctness of H(u).Cp. As H(u).Cp is
updated, we need to determine whether w still belongs to R.
If H(u).Cp >= minyep\ (4} Cp(p) holds, u is still included
in the top-k result set R. On the other hand, Lazylnsert
compares H(u).Cp with the ego-betweenness of the (k + 1)-
th element in the sorted list H (lines 4-8). Let y denote the
(k + 1)-th vertex in H. If H(y).F¢ is false, that means y
is the vertex with the highest ego-betweenness that is not
contained in R. Lazylnsert compares H (u).Cp with H(y).Cp
and maintains R (lines 6-7). If H(y).Fg¢ = true holds,
Lazylnsert computes H(y).Cp and updates H(y).F¢, and
then performs the next loop (line 8). While u ¢ R, we
derive the new upper bound ub(u) of H(u).Cg to determine
whether H (u).C'p needs to be computed exactly (lines 10-16).
If ub(u) <= minyer Cp(p) holds, it means that H(u).Cp is
not greater than min,ecp C'p(p), thus u is still not an answer
of the top-k results and Lazylnsert can avoid calculating the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 6: Lazylnsert

Input: G =
Output: the updated R.
1 if u € R then
Compute H(u).Cp; H(u).Fg < false;
if H(u).Cp < minye g\ (v} Cp(p) then
while true do

|

(V, E), H, an inserted edge (u, v), top-k result set R.

y < argmaxpen—r H(p).C
if H(y).Fa = false and H(u) CB < H(y).Cp then
| R+ (R—{u})U{y}; break;

else Compute H(y).Cp; H(y).Fg < false;

9 else
d(u)*(d(u)—1).
5 H

if ub(u) > min,cr Cp(p) then
Compute H(u).Cp; H(u).Fg «+ false;
if H(u).Cp > minyecr Cp(p) then
y < argminper Cp(p);
R (F—{y}) U {u}:
else H(u).Fg <+ true;

Update H and R according to v as lines 1-16;

L+ N(u) N N (v);

for z € L do
if x € R then Update H and R according to x as lines 2-8;
L else H(z).Fg < true;

22 return R;

correct H(u).Cp and only updates H(u).Fg to true (line
16). Otherwise, Lazylnsert calculates H (u).Cp and identifies
whether u should be inserted into R (lines 12-15). Likewise,
we perform the same operation for the other endpoint v (line
17). Then, Lazylnsert handles the common neighbors of w
and v (lines 18-21). For vertex = € L, the algorithm judges
whether z is included in R. If yes, it updates H and R as the
operations of u (line 20). On the other hand, because Cg(x)
is decreasing, x is still not in the top-k result set and thus
Lazylnsert avoids computing the exact H(z).Cp and only sets
H(z).Fg to true (line 21). Note that the ego-betweennesses
of the vertices in R are always correct. Finally, Lazylnsert
returns the top-k vertices with the highest ego-betweennesses
correctly.

Example 7: Reconsider the graph G in Fig. 1(a). Before
inserting the edge (i,k) into G, we have Cp(i) = 8 and
Cp(k) = 1. After the insertion, Cp (i) is equal to 10.5 and
Cgp(k) is 0.5. For the common neighbor f, Cg(f) decreases
from 11 to 9.5. Clearly, the change of the ego-betweennesses
for the ends of the insertion edge is uncertain while it is
decreasing for the common neighbors. Suppose that & = 1
and the current result set is R = {f}. For vertex k, it is
not included in R and its new bound is (3 %2)/2 = 3 <
Cgp(f) = 11, thus the calculation of C(k) can be skipped
and we only set H(k).FG to true. For vertex 4, the new bound
is (7x6)/2 =21 > Cp(f) = 11, thus we need to calculate
the new Cp(i) = 10.5 and update R = {i}. In this case,
consider the common neighbor f, it is not included in R.
Since Cp(f) is not incremental, it definitely not in the top-
1 result after inserting (i, k), thus we can avoid calculating
Cp(f) and updating the results R. d

Below, we analyze the correctness of Algorithm 6.

Theorem 4: Given a graph G = (V| E), H and the top-k
results R, Algorithm 6 correctly maintains the set R when
inserting an edge (u,v).

Proof: As shown in Lemma 5, the ego-betweenness of
a common neighbor w tends to decrease. Thus, if w is not a
top-k answer, Algorithm 6 avoids calculating C'5(w) because
Cp(w) < Cp(w) < minyer Cp(p) holds. Otherwise, Algo-
rithm 6 computes C g (w) to determine whether it is still in the
top-k results. For the end-vertices of the inserted edge (u,v),

387

we show the correctness by taking v as an example. If v is a
top-k answer, Algorithm 6 computes C'g(u) and compares it
with the minimal ego-betweenness in R to determine whether
u still belongs to R. Otherwise, with the edge insertion, the
degree of u increases and the algorithm derives a new upper
bound ub(u) = for C'g(u). If ub(z) < minyer Cp(p) holds,
we have C'g(u) < ub(u) < min,er Cp(p), thus w is still not
in the top-k results and can be safely pruned. On the other
hand, Algorithm 6 calculates C'p(u) and identifies whether
u should be inserted into R. Therefore, the algorithm can
correctly maintain the top-k vertices.

Lazy update for edge deletion. Consider the deletion edge
(u,v) and a common neighbor w € N(u) N N(v). Like the
edge insertion, the changes of Cp(u), Cp(v) and Cp(w) are
as follows. Cg(w) is definitely non-decreasing while Cp(u)
and Cp(v) are uncertain. Fortunately, after deleting (u,v),
the degrees of u and v decrease and also the upper bounds of
Cp(u) and Cp(v) decrease. Based on this, we can implement
a lazy update algorithm which is very similar to edge insertion.

Our lazy update algorithm for handling edge deletion,
called LazyDelete, can be easily devised by slightly modifying
Algorithm 6. Like lines 14-15 of Algorithm 6, LazyDelete
needs to find the vertex y with the lowest ego-betweenness in
the top-k results. Armed with our lazy update technique, the
ego-betweennesses of the vertices in R are not all correct, thus
LazyDelete must find y € R with the lowest ego-betweenness
and H(y).Fg = false. The other steps of LazyDelete are
similar to those of Lazylnsert. Due to the space limit, the
pseudo-code of LazyDelete is omitted.

Example 8: Let us still consider the graph G in Fig. 1(a).
Before deleting the edge (c,g) from G, we have Cg(c)
41/6, Cp(g) = 2/3 and Cp(e) = 9/2. After the deletion,
the new ego-betweennesses for ¢, ¢, and e are 55/6,1/2,9/2,
respectively. Obviously, the change of the ego-betweennesses
for the ends of the deletion edge is uncertain while it is non-
decreasing for the common neighbors. Suppose that £ = 1 and
we can check that the current R = {f}. For vertex g, its new
bound is equal to (3%2)/2 =3 < Cp(f) =11 and g ¢ R,
thus we do not need to calculate the new ego-betweenness
for g and only set H(g).FG to true. For vertex ¢, its new
bound is (6 * 5)/2 = 15 > Cp(f) = 11, thus we calculate
the new Cp(c) = 55/6 and the top-1 answer is still f. When
k = 12, the top-k results before deleting the edge (¢, g) is the
set V — {u,v,y, z}. In this case, the common neighbor e is
included in R. Since Cp(e) is non-decreasing after deleting
(c,9) , it is definitely still contained in the top-12 results, thus
we can avoid updating the answer set R. g

V. THE PARALLEL ALGORITHMS
A. A vertex-based parallel algorithm

The ego-betweenness of a vertex is defined on its ego net-
work which can be calculated independently, thus a straight-
forward parallel solution is to process each vertex in parallel.
However, such a simple solution may be inefficient, especially
for large graphs. When processing each vertex independently,
we need to construct its ego network and explore the dia-
mond structures (a diamond denotes two triangles that have a
common edge), which makes the same diamond enumerated
multiple times, resulting in repetitive calculations. To solve
this problem, we propose a vertex-based parallel algorithm as
follows.

As can be seen from Algorithm 1 and Algorithm 2, we
explore the diamond structures by searching triangles, thus
we can employ a parallel triangle enumeration to calculate
the ego-betweennesses for all vertices. The main idea is that

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

TABLE I

DATASETS
Dataset | n I m [dmax | Desecription
WikiTalk | 2,394,385 | 4,659,565 | 100,029 [Communication network
DBLP 1,843,617 | 8,350,260 2,213 Collaboration network
Pokec 1,632,803 | 22,301,964 | 14,854 Social network
LiveJournal | 3,997,962 | 34,681,189 | 14,815 Social network
Sina 58,655,848 | 261,321,033 | 278,489 Social network

every triangle in G has a unique orientation based on the total
ordering, and only be enumerated when processing the highest-
ranked vertex in this triangle. When a triangle A, ,) iS
found, we utilize it to explore diamonds and maintain S, S,
and S,, which record the number of shortest paths between
their neighbors. Note that we should lock the map S when it
is updated to ensure the correctness of the parallel algorithm.
To avoid frequent locking operations, we employ the idea of
Algorithm 2 to divide the neighbors of a vertex into the in-
neighbors and out-neighbors for delaying the updates of S,
which can also search a triangle once. As all triangles are
enumerated, that is, the information of the number of shortest
paths is correctly maintained in the maps, we calculate the ego-
betweenness for each vertex in parallel according to Lemma 2.
We refer to this parallel implementation as VertexPEBW and
omit the pseudo-code due to the space limit.

B. An edge-based parallel algorithm

In practice, VertexPEBW might still be inefficient, because
the out-degrees of the vertices typically exhibit a skew dis-
tribution, resulting in the workloads of different threads are
unbalanced. A better solution is to enumerate triangles for each
directed edge in parallel. This is because the distribution of the
number of common outgoing neighbors of the directed edges
is typically not very skew, thus improving the parallelism of
the algorithm. We refer to such an edge-parallel algorithm
as EdgePEBW. In the experiments, we will compare the
efficiency of VertexPEBW and EdgePEBW.

VI. EXPERIMENTS

In this section, we conduct extensive experiments to evaluate
the efficiency and effectiveness of the proposed algorithms.
We implement the proposed top-k ego-betweenness search
algorithms, namely, BaseBSearch and OptBSearch (Algorithm
1 and Algorithm 2). For comparison, we implement a baseline
algorithm proposed in [7], called Baseline, which computes the
ego-betweenness based on a matrix multiplication technique.
Note that it is very hard to integrate our upper-bounding tech-
niques into the matrix multiplication procedure, thus Baseline
first computes the ego-betweenness for all vertices using the
matrix multiplication technique, and then picks the top-k
vertices. To maintain the ego-betweennesses for all vertices,
we implement Locallnsert (Algorithm 4) and LocalDelete
for handling edge insertion and edge deletion, respectively.
We also implement Lazylnsert (Algorithm 6) and LazyDelete
to maintain the top-k results for edge insertion and edge
deletion, respectively. In addition, we implement two parallel
algorithms, VertexPEBW and EdgePEBW, to calculate ego-
betweennesses of all vertices using OpenMP. All algorithms
are implemented in C++. All experiments are conducted on
a PC with 2.10GHz CPU and 256GB memory running Red
Hat 4.8.5. We set the time limit for all algorithms to 3 days,
and use the symbol “INF” to denote that the algorithm cannot
terminate within 3 days.

Other related algorithms. Note that this work focuses on
the ego-betweenness computation problem, thus we mainly
compare the performance of different ego-betweenness com-
putation algorithms in efficiency testings, i.e., the Baseline
and the proposed algorithms. All the existing betweenness

388

TABLE 1I
THE NUMBER OF VERTICES FOR EXACT COMPUTATION
Dot 1 % =500 [kF=1000 | _k=2000
| BaseBS | OptBS | BaseBS | OptBS | BaseBS | OptBS
WikiTalk 527 508 1052 013 2008 2013
DBLP 557 550 1499 1160 3060 2491
Pokec 567 552 1230 1168 2498 2367
LiveJournal 791 615 1723 1282 3406 2413
Sina - 500 : 1000 - 2000

computation methods, such as [6], [22], [23], are precluded
from our comparison in efficiency testings. For effectiveness
testings, we aim to observe whether the top-k ego-betweenness
vertices are similar to the top-k betweenness vertices. To
compute the top-k betweenness vertices, we make use of
the state-of-the-art Brandes’ algorithm [6] to calculate the
exact betweenness for each vertex and then identify the top-%
vertices with the highest betweennesses. In addition, we also
use the sampling-based approximation betweenness algorithm
[24], [25] to compute the top-k vertices for comparison. For
brevity, we refer to the exact Brandes’ algorithm as TopBW,
the approximation betweenness algorithm as TopABW, and
our OptBSearch algorithm as TopEBW. The top-k results
yielded by TopBW, TopABW and TopEBW are denoted as
BW, ABW and EBW respectively.

Datasets. We use 5 different types of real-life networks in
the experiments, including social networks, communication
networks and collaboration networks. The detailed statistics
of the datasets are summarized in Table I. In Table I, dyax
denotes the maximum degree of the graph. The dataset Sina is
downloaded from https://networkrepository.com/soc.php, and
the others are downloaded from snap.stanford.edu.

Parameters. The parameter £ in our algorithms is chosen from
the set {50, 100, 200, 500, 1000, 2000} with a default value of
k = 500. The parameter 6 in OptBSearch is selected from
the set {1.05,1.10,1.15,1.20, 1.25,1.30} with a default value
1.05. We will study the performance of our algorithms with
varying k and 6. Unless otherwise specified, the value of a
parameter is set to its default value when varying another
parameter.

A. Efficiency testing

Exp-1: Runtime of different algorithms. Fig. 6 shows
the runtime of Baseline, BaseBSearch and OptBSearch with
varying k on all datasets. As can be seen, BaseBSearch and
OptBSearch are around 3-90 times and at least one order of
magnitude faster than Baseline, and OptBSearch is roughly 5-
23 times faster than BaseBSearch within all parameter settings.
For example, on DBLP, BaseBSearch and OptBSearch take
240.482 seconds and 10.198 seconds to retrieve the top-50
results, while Baseline consumes 5527.398 seconds which is
roughly 23 times and 540 times slower than BaseBSearch and
OptBSearch. When & = 200 on LiveJournal, the runtime
of Baseline, BaseBSearch and OptBSearch is 158,253.133
seconds, 11,858.172 seconds, and 702.529 seconds, respec-
tively. This is because the Baseline needs to compute all ver-
tices’ ego-betweennesses to select the top-k results, while our
BaseBSearch and OptBSearch equipped with upper bounds
only require to calculate the ego-betweennesses of a part of
vertices. Moreover, the dynamic upper bound in OptBSearch
is tighter than the static upper bound in BaseBSearch, thus it is
more effective to prune unpromising vertices that are definitely
not contained in the top-k results.

In addition, we also record the number of vertices whose
ego-betweennesses are computed exactly in BaseBSearch
and OptBSearch. For brevity, we refer to BaseBSearch and
OptBSearch as BaseBS and OptBS. Table II illustrates the

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

6

INFl|&A—A A A A A

10' OptBSearch B OptBSearch &3)

107!

_o--0 " sl a—a A A A A
S 10 = 10 - =10 ~10 s} —
2 10 o) o--0-© o) B o S 10 .
2 9 0---© el 2 D 10t ---© 8 10 B
£ 10' g0 000 200) 210’ | o---0--0---0-- 0O 20 1 o---e @ e < o0 % gemd
E 103 JE R E.i ————— B8 E ol g8 g]oz [- = = X a o 10° . g8 g 10 D"D‘ i
& 1 Baseline —&— s Baseline —&— S Baseline —&— =102 Baseline —&— Sl P Baseline —&—
= BaseBSearch --© - = o BaseBSearch --© - S0 BaseBSearch --© - = BaseBSearch --© - = BaseBSearch --© -

OptBSearch -3

10

10' OptBSearch £) OptBSearch £

50 100 200k500 1000 2000 50

(a) WikiTalk (vary k)

100 QOOkSD{) 1000 2000

(b) DBLP (vary k)

50 100 200k500 1000 2000

(c) Pokec (vary k)

50 100 200k500 1000 2000 50 100 200k500 1000 2000

(d) LiveJournal (vary k) (e) Sina (vary k)

Fig. 6. Comparisons of Baseline, BaseBSearch and OptBSearch on various datasets

2.0K

1.5K
o 12K
900
600
300

e85 85 | xl—e8-85887°

OptBSearch —5—

&
=

1.0K OptBSearch —H—

Time (sec)
Time (se

500

105 110 113120 125 130
(a) WikiTalk (vary 6)
Fig. 7. Evaluation of OptBSearch with varying 6

1.05 1.10].]561.20 1.25 1.30

(b) LiveJournal (vary 0)

14 14

Average Time (sec)
Average Time (sec)

(a) edge insertion (b) edge deletion

Fig. 8. Average runtime of the algorithms for random edge updates

LocalDelete Wi
14 LazyDelete

Average Time (sec)
Average Time (sec)

WikiTalk DBLP PokecLiveJournal Sina

(b) edge deletion

Fig. 9. Average runtime of the algorithms for adversarial edge updates

25K 25K

BaseBSearch —©— BaseBScarch —6—
520K OptBSearch --E3- 520K OptBSearch --E3 -
215K 215k
g 10k 210K
sk o5k
m—@ e e =
20% 40% 60% 80% 100% 20% 40% 60% 80% 100%
m n

(a) LiveJournal (vary m)
Fig. 10. Scalability of BaseBSearch and OptBSearch

(b) LiveJournal (vary n)

results of k& = 500, 1000, 2000 on all datasets. Similar results
can be observed for other k£ values. As can be seen, the number
of vertices computed by OptBSearch is significantly less than
that computed by BaseBSearch on all datasets. For example, to
obtain the top-2000 results on LiveJournal, OptBSearch only
needs to compute the ego-betweennesses for 2,413 vertices,
while BaseBSearch has to compute 3,406 vertices. These
results further confirm our theoretical analysis in Section III.

Exp-2: The effect of 6. Fig. 7 reports the effect of parameter
0 in OptBSearch on WikiTalk and LiveJournal. The results on
the other datasets are consistent. As can be seen, the runtime of
OptBSearch varies slightly with different 6 values. In general,
OptBSearch performs slightly better with a relatively small
0. For example, with § = 1.05, OptBSearch consumes the
lowest runtime on both WikiTalk and LiveJournal. Note that a
large 6 may increase the cost of computing the exact ego-
betweennesses, while a small § may increase the cost of
updating the upper bounds in H. These results indicate that
when § = 1.05, OptBSearch can achieve a good tradeoff
between these two costs.

Exp-3: Evaluation of the updating algorithms. To evaluate
the performance of our updating algorithms, we randomly

389

:38 VertexPEBW —E5— o g VertexPEBW —8— L
S 600 EdgePEBW -4 - £ 35| EdgePEBW --&- -
(s) < N
£ 500 26
o 400 =S5 A
£ 300 E 4 o
£ 200 - 3 K
100 Aha & W/Z/B’E/E‘
0 -
14 8 1216 1 4 8 12 16
t t
(a) Pokec (b) Pokec

Fig. 11. Evaluation of the parallel algorithms

select 1,000 edges for insertion and deletion on each dataset,
which we call random edge updates. We also randomly gener-
ate 1,000 edges whose end-vertices are the vertices in the top-k
results on each dataset for comparison, which we call adver-
sarial edge updates. Fig. 8 and Fig. 9 show the average runtime
of Locallnsert, LocalDelete, Lazylnsert and LazyDelete on
all datasets for random edge updates and adversarial edge
updates, respectively. In general, the runtime of all algorithms
for adversarial edge updates is slightly higher than the runtime
of all algorithms for random edge updates. Moreover, the
update time of Lazylnsert is lower than that of Locallnsert for
both random and adversarial edge updates as expected. For
example, when inserting random edges, Locallnsert consumes
12.555 seconds to maintain ego-betweennesses for all vertices
on Sina, while Lazylnsert takes 8.690 seconds for updating
the top-k results. In the case of adversarial edge updates,
Locallnsert and Lazylnsert take 15.837 seconds and 10.497
seconds to maintain ego-betweennesses for all vertices and
the top-k results on Sina, respectively. Similar results can also
be observed for LocalDelete and LazyDelete. In addition, the
average runtime of Locallnsert (Lazylnsert) and LocalDelete
(LazyDelete) is almost the same. Note that the runtime of our
updating algorithms is less than 16 seconds for all datasets,
and even less than 1.0 seconds for relatively small datasets
expect Sina. These results indicate that the proposed updating
algorithms are very efficient on large real-life graphs even for
adversarial edge updates.

Exp-4: Scalability testing. Here we evaluate the scalability of
BaseBSearch and OptBSearch. To this end, we generate four
subgraphs for each dataset by randomly picking 20%-80% of
the edges (vertices), and evaluate the runtime of BaseBSearch
and OptBSearch on these subgraphs. Fig. 10 illustrates the
results on LiveJournal. The results on the other datasets are
similar. As can be seen, the runtime of OptBSearch increases
very smoothly with increasing m or m, while the runtime
of BaseBSearch increases more sharply. Again, we can see
that OptBSearch is significantly faster than BaseBSearch with
all parameter settings, which is consistent with our previous
findings.

Exp-5: Evaluation of parallel algorithms. We vary the
number of threads ¢ from 1 to 16, and evaluate two paral-
lel algorithms, i.e., VertexPEBW and EdgePEBW, with an
increasing t. We run OptBSearch with the parameter £k = n
to compute ego-betweennesses as baseline for ¢ = 1. Fig. 11
shows the results of runtime and speedup ratio on Pokec. From
Fig. 11, we can see that both VertexPEBW and EdgePEBW
achieve very good speedup ratios. The runtime of EdgePEBW

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

10 o
ELUN Te S—o—° B1o° TopBW —6—
2 opBW —6— 2 TopEBW --E
L mfm 8 EW PN VSl SN
£10° ﬁ:—;,g—-@“'@”@'”g =10°

" 10| B---8--3---8--8---8

50 100 ZOOkSOO 1000 2000 50 100 ZOOkSOO 1000 2000

(a) WikiTalk (b) Pokec
! E_WE/E'E !
S o8| B H SN S o8
= 06 = 06 @/EFH\H
= o4 BW N EBW —E— = o4 RN
g BW N ABW --4&- g A
S 02 S 02 BWAEBW —52 -4
) BW N ABW --4 -
50 100 200 500 1000 2000 50 100 200 500 10002000
k k
(¢) WikiTalk (d) Pokec

Fig. 12. Comparisons of TopBW,

10°

TopABW and TopEBW

[e e G oGO
0 ~ 10*
S 10% | A B D B Q3 | Al b A
R TopBW —6— 2w TopBW —6—
> v TopEBW --E} - 5 10° TopEBW --E3-
g 10] TopABW & E 10 TopABW 4
£ 10 E
= = CB--0O--- .
10° B O BEE IR B R - e
107" 107!
1050 100 150 200 250 1050 100 150 200 250
k k
(a) DB () IR
1 1
S o8 S o8 E/E\E‘E\e—g
5 06 BW ~EBW —& 5 06 JESELYSRNR
3o BW N ABW --4- ER ~
S 02 S 02 " BWNEBW —5—
0 BW N ABW --4&-
10 50 100 150 200 250 10 50 100 150 200 250
k k
(c) DB (d) IR
Fig. 13. Comparisons of TopBW, TopABW and TopEBW on DBLP

is lower than VertexPEBW with all parameter settings. For
example, the running time of OptBSearch to calculate ego-
betweennesses for all vertices is 766.652 seconds. When
t = 16, VertexPEBW takes 200.763 seconds and EdgePEBW
consumes 96.260 seconds to compute the results. The speedup
ratios of VertexPEBW and EdgePEBW are roughly equal to
4 and 8, respectively. These results indicate that our parallel
algorithms are very efficient on real-life graphs.

B. Effectiveness testing

Exp-6: Comparisons of TopBW, TopABW and TopEBW.
We compare TopBW, TopABW, and TopEBW on WikiTalk
and Pokec with k£ € {50,100,200,500,1000,2000}. The
results on the other datasets are consistent. Note that to
speed up the betweenness computation, we also implement
a parallel version of TopBW for comparison. The runtime of
TopBW with 64 threads, TopABW and TopEBW is shown
in Fig. 12(a-b). Clearly, TopEBW is at least two orders of
magnitude faster than the parallel TopBW within all parameter
settings. Compared to TopABW, TopEBW is at least one order
of magnitude faster on Pokec with varying k. Specifically,
on Pokec, TopEBW takes 106.276 seconds, while TopABW
and TopBW consume 5,038.103 seconds and 559,322.062
seconds to output the top-200 results. Fig. 12(c-d) report the
overlap of the top-k results obtained by TopBW, TopABW and
TopEBW. As can be seen, the overlap between BW and EBW
is generally higher than 60% on all datasets. Particularly, on
WikiTalk, the overlap is even more than 80%. Moreover, we
can see that the overlap between BW and EBW is generally
higher than the overlap between BW and ABW. These results
indicate that for approximating the top-k betweenness, our al-
gorithm is much better than the sampling-based approximation
betweenness computation algorithm in terms of both runtime
and accuracy.

Remark. The worst-case time complexity of the Brandes’

390

TABLE III
ToP-10 SCHOLARS IN DB

Top-10 EBW [d] Cs | Top-10 BW [d] Br
*Jiawei Han 4127739285 *Philip S. Yu 360 [50,320,100
*Philip S. Yu 360 | 58,834.1 *Jiawei Han 412 150,059,900
*Christos Faloutsos | 337 (52,1929 | *Christos Faloutsos | 337 | 46,340,200
*Jian Pei 21520,531.1 *Gerhard Weikum | 213 | 26,232,700
*Gerhard Weikum | 213 | 19,238.3 *Beng Chin Ooi 205 | 22,376,200
*Michael J. Franklin | 220 | 17,867.5 *Jian Pei 215 | 21,470,900
Michael Stonebraker |210 | 16,081.4 | *Michael J. Franklin | 220 | 20,809,000
*Raghu Ramakrishnan | 210 | 15,930.1 | *Raghu Ramakrishnan | 210 | 18,481,900
*Beng Chin Ooi 205 | 14,848.2 Haixun Wang 183 | 17,062,500
Hector Garcia-Molina | 197 | 14,664.8 H. V. Jagadish 178 | 16,144,700

TABLE IV
ToP-10 SCHOLARS IN IR

Top-l0EBW [d | Cp] Top-10 BW [d] Br
*Jeftrey P. Bigham [24417 1.4846e+06 *Taesup Moon 2318]1.33948e+07
*Alex D. Wade 2510 1.46767e+06 | *Jeffrey P. Bigham |2441| 1.1711e+07
*Adam Sadilek |1993|1.30844e+06| *Alex D. Wade |2510|1.10161e+07
*Taesup Moon 2318 |1.25722e+06| *Adam Sadilek 19939.49158e+06
*Antonio Gulli 1951|1.16136e+06| *Antonio Gulli 19519.44098e+06
*Henry A. Kautz |1731| 882,981 *Bob Boynton 1618 |7.00364e+06
*Bob Boynton 1618 | 844,761 *Henry A. Kautz |17316.82747¢+06
*Padmini Srinivasan |1541 822,131 Linchuan Xu 1834 (6.79258e+06
*Yelena Mejova 1210 580,116 *Padmini Srinivasan|1541|6.41121e+06
Raymie Stata 796 224,422 *Yelena Mejova | 12105.82391e+06

algorithm, i.e., TopBW, is O(mn) which calculates between-
nesses for all vertices. The BaseBSearch and OptBSearch (i.e.,
TopEBW) consume O(amd,,q;) and O(amdyax + mlogn)
time to compute all vertices’ ego-betweennesses in the worst
case, respectively. Since d,q, is often much smaller than n
and « is a small constant in most large real-life graphs, the
worst-case time complexity of our algorithms is expected to
be lower than O(mn). In our experiments, we can compare
the running time of TopBW and TopEBW by calculating the
betweennesses and ego-betweennesses for all vertices. The
running time of TopEBW and TopBW on Pokec is illustrated
in Fig. 11(a) (i.e., t = 1,k = n) and Fig. 12(b) (the TopBW
algorithm), respectively. Similar results can also be observed
on the other datasets. As can be seen, TopEBW takes 766.652
seconds to obtain the ego-betweennesses for all vertices in
Pokec, while TopBW consumes 559,322.062 seconds to com-
pute all vertices’ betweennesses, which is roughly three orders
of magnitude slower than TopEBW. These results confirm that
the practical performance of our algorithms is significantly
better than that of TopBW [6] when computing the (ego)
betweennesses for all vertices.

Exp-7: Case study on DBLP. We extract two subgraphs,
namely, DB and IR, from DBLP for case study. DB contains
the authors in DBLP who had published at least one paper
in the database and data mining related conferences (i.e.,
SIGMOD, SIGKDD, SIGIR, VLDB, ICDE, PODS, KDD,
ICDM, SDM, EDBT). The DB subgraph contains 37,177
vertices and 131,715 edges. The IR subgraph contains the
authors who had published at least one paper in the in-
formation retrieval related conferences (i.e., SIGIR, CIKM,
WSDM) with 13,445 vertices and 37,428 edges. We invoke
TopBW, TopABW, and TopEBW to find the top-k highest
(ego-)betweennesses scholars on DB and IR with the parameter
k € {10,50,100,150,200,250}. The results are shown in
Fig. 13. Consistent with previous findings, the running time
of TopEBW is significantly faster than TopBW and TopABW.
Moreover, we can see that the overlap between BW and EBW
is higher than 80% on both DB and IR. Although TopABW
can achieve comparable effectiveness on DB, it performs
much worse than our algorithm on IR. These results further
confirm that our solutions are significantly better than the
sampling-based betweenness approximation algorithm [24],
[25] in terms of both efficiency and effectiveness.

We also illustrate the top-10 scholars on DB and IR in
Table III and Table IV. In both Table III and Table IV, d

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

denotes the number of co-authors of a scholar; Cg and Br
denote the ego-betweenness and betweenness of a scholar
respectively. Clearly, the overlaps of the top-10 results are 80%
and 90% on DB and IR respectively. Moreover, we can see that
the top-10 scholars with the highest ego-betweennesses are the
most influential in the database, data mining, and information
retrieval communities. Such scholars may play a bridge role
in connecting different research groups. For example, in Ta-
ble III, Professor Jiawei Han has 412 co-authors and maintains
connections with many different research groups. Similarly, in
Table 1V, Taesup Moon is interested in diverse areas such as
information retrieval, statistical machine learning, information
theory, signal processing and so on, thus he plays an important
role in promoting the interactions between different research
communities. These results indicate that our algorithms can
be used to find high influential vertices in a network that act
as network bridges.

Exp-8: Case studies on Dolphins and TrainBombing. Here
we conduct case studies on two small datasets, Dolphins and
TrainBombing, to evaluate the effectiveness of our solutions.
Dolphins (62 nodes and 159 edges) is a social network of
dolphins living in New Zealand, and TrainBombing (64 nodes
and 243 edges) contains contacts between suspected terrorists
involved in the train bombing of Madrid on 2004. Both
Dolphins and TrainBombing can be downloaded from https:
/lkonect.cc/networks. We invoke the TopBW and TopEBW
algorithms to find the top-1 vertices with the highest between-
ness and ego-betweenness on Dolphins and TrainBombing.
The results are depicted in Fig. 14 in which the vertices
colored blue and red are the vertices with the highest between-
nesses and ego-betweennesses respectively. From Fig. 14(a),
we can see that the blue vertex plays the role of a “bridge”
in Dolphins which connects two different tightly-connected
communities. Moreover, such a vertex has few neighbors and
its ego-betweenness is not very large. While the vertex colored
red with the highest ego-betweenness lies in the center of
a community, indicating that it is an important vertex in
Dolphins. Meanwhile, the number of neighbors associated
with the red vertex is larger compared with that of the blue
vertex. In Fig. 14(b), similar results can also be observed
on TrainBombing. These results suggest that the semantics
of ego-betweenness is different from that of betweenness. In
particular, our algorithm can find vertices that act as “centers”
in a community which often exhibit strong relationships with
other vertices. However, the vertices with high betweennesses
tend to connect different communities as “bridges” and are
likely associated with weak links.

VII. RELATED WORK

Betweenness centrality. Our work is closely related to be-
tweenness centrality [6], [26]. Betweenness centrality is an im-
portant measure of centrality in a graph based on the shortest
path, which has been applied to a wide range of applications
in social networks [3], biological networks [4], computer
networks [5], road networks [2] and so on. The best-known
algorithm for betweenness computation, proposed by Brandes
[6], runs O(nm) time complexity for unweighted networks.
Measuring the betweenness centrality scores of all vertices
is notoriously expensive, thus many parallel and approximate
algorithms have been developed to reduce the computation
cost [27]-[31]. Fan et al. proposed an efficient parallel GPU-
based algorithm for computing betweenness centrality in large
weighted networks and integrated the work-efficient strategy to
address the load-imbalance problem [27]. Furno et al. studied
the performance of a parametric two-level clustering algorithm
for computing approximate value of betweenness with an

391

(a) Dolphins

(b) TrainBombing

Fig. 14. Case studies on Dolphins and TrainBombing (blue vertex: the top-1
betweenness vertex; red vertex: the top-1 ego-betweenness vertex)

ideal speedup with respect to Brandes’ algorithm [30]. In this
paper, we focus on the ego-betweenness centrality which is
first proposed by Everett et al. [7] as an approximation of
betweenness centrality. Ego-betweenness centrality has gained
recognition in its own right as a natural measure of a node’s
importance as a network bridge [32]. To the best of our
knowledge, our work is the first to study the problem of finding
top-k ego-betweenness vertices in graphs.

Top-k retrieval. Our work is also related to the top-k re-
trieval problem, which aims to find % results with the largest
scores/relevances based on a pre-defined ranking function [33].
The general framework for answering top-k queries is to
process the candidates according to a heuristic order and prune
the search space based on some carefully-designed upper
bounds. An excellent survey can be found in [33]. There are
many studies on top-k query processing for heterogeneous
applications, such as processing distributed preference queries
[34], keyword queries [35], set similarity join queries [36]. An
influential algorithm was proposed by Fagin et al. [37], [38],
which considers both random access and/or sequential access
of the ranked lists. Recently, some studies take diversity into
consideration in the top-k retrieval in order to return diversified
ranking results [39]-[43]. For instance, Li et al. proposed a
scalable algorithm to achieve near-optimal top-k diversified
ranking with linear time and space complexity with respect to
the graph size. Some studies have also been done which focus
mainly on exploring influential communities, individuals, and
relationships in different networks [13]-[15], [44], [45]. For
example, the study [45] investigated an instance-optimal algo-
rithm, which runs in linear time complexity without indexes,
for computing the top-k influential communities. In this paper,
we develop two search frameworks to identify the top-k ver-
tices with the highest ego-betweennesses and propose efficient
techniques to maintain top-k results when the graph is updated.

VIII. CONCLUSION

In this paper, we study a problem of finding the top-

k vertices in a graph with the highest ego-betweennesses.
To solve this problem, we first develop two top-k search
frameworks with a static upper bound and a novel dynamic
upper bound, respectively. Then, we propose efficient local
maintenance algorithms to maintain the ego-betweenness for
each vertex when an edge is inserted and deleted. We also
present lazy-update techniques to maintain the top-k results
in dynamic graphs. We conduct extensive experiments using
five real-life datasets to evaluate the proposed algorithms. The
results demonstrate the efficiency, scalability and effectiveness
of our algorithms. Also, the results show that the top-k ego-
betweenness results are highly similar to the top-k between-
ness results, but they are much cheaper to compute by our
algorithms.
Acknowledgement. This work was partially supported by (i)
National Key Research and Development Program of China
2020AAA0108503, (ii) NSFC Grants 62072034, U1809206, and
61772346. Guoren Wang and Rong-Hua Li are the corresponding
authors of this paper.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

[19]
[20]
[21]
[22]

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:06:53 UTC from |IEEE Xplore. Restrictions apply.

REFERENCES

L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 3541, 1977.

M. E. Newman, “The mathematics of networks,” The new palgrave
encyclopedia of economics, vol. 2, no. 2008, pp. 1-12, 2008.

D. A. Ostrowski, “An approximation of betweenness centrahty for social
networks,” in ICSC, pp. 489-492, 2015.

H. Jeong, S. P. Mason, A.-L. Barabési, and Z. N. Oltvai, “Lethality and
centrality in protein networks,” Nature, vol. 411, no. 6833, pp. 41-42,
2001.

L. Baldesi, L. Maccari, and R. L. Clgno “On the use of eigenvector
centrality for cooperative streaming,” [EEE Communications Letters,
vol. 21, no. 9, pp. 1953-1956, 2017.

U. Brandes “A faster algorlthm for betweenness centrality,” Journal of
mathematical soctolagy, vol. 25, no. 2, pp. 163-177, 2001.

M. Everett and S. P. Borgatti, “Ego network betweenness
networks, vol. 27, no. 1, pp. 31-38, 2005.

L. C. Freeman, “Centered graphs and the structure of ego networks,”
Math. Soc. Scz,vol 3, no. 3, pp. 291-304, 2.

B. Guidi, M. Conti, A Passa.rella and L. RlCCl “Distributed protocols
for ego betweenness centrality computation in dosns,” in 2014 IEEE
International Conference on Pervasive Computing and Communication
Workshops, PerCom 2014 Workshops, Budapest, Hungary, March 24-28,
2014, pp. 539-544, IEEE Computer Society, 2014

A. Cuzzocrea, A. Papadimitriou, D. Katsaros, and Y. Manolopoulos,
“Edge betweenness centrality: A novel algorlthm for qos-based topology
control over wireless sensor networks,” J. Netw. Comput. Appl., vol. 35,
no. 4, pp. 1210-1217, 2012.

E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proceedings of the 8th ACM
Interational Symposium on Mobile Ad Hoc Networking and Computing,
MobiHoc 2007, Montreal, Quebec, Canada, September 9-14, 2007,
pp. 32-40, ACM, 2007.

A. T. Akabane, R. Immich, R. W. Pazzi, E. R. M. Madeira, and L. A.
Villas, “Distributed egocentric betweenness measure as a vehicle selec-
tion mechamsm in vanets: A performance evaluation study,” Sensors,
vol. 18, no. 8, p. 2731, 2018.

X. Huang, H. Cheng, R. Li, L. Qm and J. X. Yu, “Top-k structural
diversity search in large networks VLDB Journal vol. 24, no. 3,
pp. 319-343, 2015.

L. Chang, C. Zhang, X. Lin, and L. Qin,
diversity search,” in ICDE, pp. 95-98, 2017.
Q. Zhang, R.-H. Li, Q. Yang, G. Wang, and L. Qin, “Efficient top-k
edge structural drversrty search,” in ICDE, pp. 205-216, 2020.

N. Chiba and T. Nishizeki, “Arborrcrty and subgraph hstmg algorithms,”
SIAM Journal on computing, vol. 14, no. 1, pp. 210-223, 1985.

M. C. Lin, F. J. Souhgnac and J. L. Szwarcﬁter “Arborrcrty h-index,
and dynamlc algorithms,” Theor. Comput. Sci., vol. 426, pp. 75-90,
2012.

Social

“Scalable top-k structural

C. S. J. A. Nash-Williams, “Decomposition of finite graphs into forests,”
Journal of the London Mathematical Society, vol. 39, no. 1, pp. 12712
1964.

J. Wang and J. Cheng, “Truss decomposition in massive networks,”
PVLDB, vol. 5, no. 9, pp. 812-823, 2012.

X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu, “Querying k-truss
community in large and dynamic graphs,” SIGMOD, 2014.

R. Li, L. Qin, J. X. Yu, and R. Mao, “Finding influential communities
in massive networks,” VLDB J., vol. 26, no. 6, pp. 751-776, 2017.

D. Prountzos and K. Pingali, “Betweenness centrality: algorithms and
implementations,” in ACM SIGPLAN Symposium on Principles and

392

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]
[33]

[34]
[35]
[36]
[37]
[38]

[39]
[40]
[41]
[42]

[43]
[44]

[45]

Practice of Parallel Programming, PPoPP ’13, Shenzhen, China, Febru-
ary 23-27, 2013, pp. 35-46, ACM, 2013.

C. Daniel, A. Furno, L. Goglia, and E. Zimeo, “Fast cluster-based
computation of exact betweenness centrality in large graphs,” J. Big
Data, vol. 8, no. 1, p. 92, 2021.

M. Riondato and E. Upfal, “ABRA: approximating betweenness cen-
trality in static and dynamic grdphs with rademacher dverdges,” in KDD
(B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and
R. Rastogi, eds.).

M. Riondato and E. M. Kornaropoulos, “Fast approximation of between-
ness centrality through sampling,” Data Min. Knowl. Discov., vol. 30,
no. 2, pp. 438-475, 2016.

L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social networks, vol. 1, no. 3, pp. 215-239, 1978.

R. Fan, K. Xu, and J. Zhao, “A gpu-based solution for fast calculation of
the betweenness centrality in large weighted networks,” PeerJ Comput.
Sci., vol. 3, p. 140, 2017.

R. K. Behera, D. Naik, D. Ramesh, and S. K. Rath, “MR-IBC:
mapreduce-based incremental betweenness centrality in large-scale com-
plex networks,” Soc. Netw. Anal. Min., vol. 10, no. 1, p. 25, 2020.

M. H. Chehreghani, “An efficient algorithm for approximate between-
ness centrality computation,” Comput. J., vol. 57, no. 9, pp. 1371-1382,
2014.

A. Furno, N.-E. El Faouzi, R. Sharma, and E. Zimeo, “Reducing pivots
of approximated betweenness computation by hierarchically clustering

complex networks,” in COMPLEX NETWORKS, pp. 65-77, 2017,
P. Crescenzi, P. Fraigniaud, and A. Paz, “Slmple and fast distributed

computation of betweenness centrality,” in INFOCOM, pp. 337-346,
2020.

P. V. Marsden, “Egocentric and sociocentric measures of network
centrality,” Social networks, vol. 24, no. 4, pp. 407-422, 2002.

I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Computing
Surveys, vol. 40, no. 4, p. 11, 2008.

K. C.-C. Chang and S.-w. Hwang, “Minimal probing: supporting expen-
sive predicates for top-k queries,” in SIGMOD, pp. 346-357, 2002.

Y. Luo, X. Lin, W. Wang, and X. Zhou, “Spark: top-k keyword query
in relational databases,” in SIGMOD, pp. 115-126, 2007.

C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity joins,”
in ICDE, pp. 916-927, 2009.

R. Fagin, “Combining fuzzy information from multiple systems,” Jour-
nal of computer and system sciences, vol. 58, no. 1, pp. 83-99, 1999.

R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” Journal of computer and system sciences, vol. 66, no. 4,
pp. 614-656, 2003.

L. Qin, J. X. Yu, and L. Chang, “Diversifying top-k results,” Proceedings
of the VLDB Endowment, vol. 5, no. 11, pp. 1124-1135, 2012.

R.-H. Li and J. X. Yu, “Scalable diversified ranking on large graphs,”
IEEE TKDE, vol. 25, no. 9, pp. 2133-2146, 2013.

A. Angel and N. Koudas, “Efficient diversity-aware search,”
ings of SIGMOD, pp. 781-792, 2011.

X. Zhu, J. Guo, X. Cheng, P. Du, and H.-W. Shen, “A unified framework
for recommending diverse and relevant queries,” in Proceedings of
WWW, pp. 3746, 2011.

R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying
search results,” in Proceedings of WSDM, pp. 5-14, 2009.

Y. Wang, G. Cong, G. Song, and K. Xie, “Community-based greedy
algorithm for mining top-k influential nodes in mobile social networks,”
in KDD, pp. 1039-1048, 2010.

F. Bi, L. Chang, X. Lin, and W. Zhang, “An optimal and progressive
approach to online search of top-k influential communities,” VLDB,
vol. 11, no. 9, pp. 1056-1068, 2018.

in Proceed-

